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In the last decade, the number of papers per year that mention “conjoint experiments”

has risen sixfold, from 110 articles published in 2010 to 600 published in 2020.1 Con-

joint designs offer researchers an efficient means of recovering multiple causal parameters

across a wide range of research areas, including radical right voting (Chou et al. 2021), tax

preferences (Ballard-Rosa et al. 2017), asylum-seeking (Bansak et al. 2016), ethical princi-

ples guiding machine behavior (Awad et al. 2018), and contemporary drivers of migration

(Spilker et al. 2020; Duch et al. 2020).

The predominant causal quantity estimated in conjoint experiments is the average

marginal component effect (AMCE; Hainmueller et al. 2014), defined as “the effect of

a particular attribute value of interest against another value of the same attribute while

holding equal the joint distribution of the other attributes in the design, averaged over this

distribution as well as the sampling distribution from the population" (Bansak et al. 2021,

29). While theoretically complex, this quantity is easily estimated using conventional re-

gression techniques, and allows researchers to isolate the average effect of attributes on

the probability of choosing a profile.

By virtue of being an average, the AMCE may mask significant heterogeneity in subjects’

behaviour. Researchers often want to know whether treatment effects differ depending

on non-randomised characteristics of the subjects who take part in the study. Because

subject covariates are not randomly assigned these analyses provide no causal insights,

and observed patterns of heterogeneity will depend on the covariates that are included in

any modeling efforts (Gerber and Green 2008). Nevertheless, analysing heterogeneity can

be useful in efforts to generalise treatment effects to populations of interest (List 2022),

and for providing hints at possible causal mechanisms.

To estimate heterogeneity in AMCEs, studies typically present separate models for dis-

tinct sub-groups within the data.2 Despite its simplicity, this subgroup analysis approach
1Based on a Google Scholar keyword searches for “conjoint experiment".
2Bansak et al. (2016), for example, run separate estimations for Left/Right, Young/Old, High/Low Educa-
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is suboptimal. First, the strategy presumes that researchers have strong theoretical and

empirical reasons to restrict our analysis to a set of sub-groups. Beyond convenient di-

chotomous splits in the data, subgroup analysis becomes unwieldy once researchers want

to consider more complex groups of respondents. Researchers often have under-developed

notions about the functional form of the heterogeneous data generating process. Second,

directly interpreting subgroup differences across models can be misleading if each sub-

group's preference differs over the reference level (Leeper et al. 2020). Third, subgroup

analyses reduce the number of observations in each model, increasing uncertainty by pre-

venting the models from “borrowing" shared variation between subsets of the data.

We propose a strategy for detecting and characterizing heterogeneity in these marginal

effects that addresses some of these limitations by exploiting the richness of the data gen-

erated in conjoint experiments. Building on a growing corpus of work highlighting the

utility of machine-learning methods in experimental settings (Hill 2011; Green and Kern

2012; Wager and Athey 2018; Künzel et al. 2019), we make three novel contributions

to the study of treatment effect heterogeneity in conjoint experiments. One contribution

is to clarify how lower-level causal quantities, i.e., subject-speci�c or conditional treat-

ment effects, are situated within the structure of conjoint designs (Abramson et al. 2020;

Zhirkov 2021). We present a simple derivation of nested causal effects that disaggregates

the AMCE to the level of the individual, round, and observation within the experiment.

Second, we leverage non-parametric machine learning estimators to estimate hetero-

geneity in experimental treatment effects (Hill 2011; Green and Kern 2012; Wager and

Athey 2018; Künzel et al. 2019; Duch et al. 2020). We predict counterfactual treatment

outcomes at the observation-level and aggregate these estimated effects to produce higher-

level treatment effect estimates. Our non-parametric strategy is based on Bayesian Addi-

tion, and Above/Below Median Income respondents, Rehmert (2020) compares effects for veteran versus
�rst-time delegates at party primaries, and Spilker et al. (2020) conduct subgroup analyses on age, income,
education and location.

3



tive Regression Trees (BART) (Hill 2011; Green and Kern 2012; Duch et al. 2020). Unlike

typical subgroup analyses and other recent approaches that focus on modelling each in-

dividual separately (Zhirkov 2021), our approach leverages the full support of the data

rather than relying on much smaller subsets of observations. We also provide variance es-

timators that exhibit good coverage, allowing researchers to quantify the uncertainty over

these predicted effects.

Third, we characterize the extent and types of heterogeneity once we have estimated

the nested causal quantities. We repurpose tools from the interpretable machine learning

literature to measure how important different subject-level covariates are for partitioning

the distribution of estimated individual-level marginal component effects (Ishwaran and

Lu 2019). Our approach allows for bias-corrected estimates of the importance of variables,

and thus to detect which variables are driving treatment effect heterogeneity.

We demonstrate our approach using data from the recent Duch et al. (2021) conjoint

study of global preferences over COVID-19 vaccination policies. To aid future research,

we provide a new R package –cjbart – that implements our proposed method, allowing

researchers to estimate and analyse treatment effect heterogeneity within conjoint experi-

ments. This package is available on the Comprehensive R Archive Network (CRAN).

1 Heterogeneity in conjoint designs

Conjoint experiments allow for ef�cient estimation of multiple causal parameters that af-

fect subjects' choices. Subjects are presented with pro�les that randomly vary along a

de�ned set of attributes. Since the value of each attribute is simultaneously randomised

(we call the possible values “attribute-levels"), and subjects make a discrete choice over

these pro�les, we can estimate the marginal effects of each attribute on subjects' choices

through repeated observation.
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Typical conjoint estimands may, however, belie diversity in subjects' behavior. To il-

lustrate the challenge facing scholars, consider a recent conjoint experiment conducted

by Duch et al. (2021). This 13-country conjoint experiment asked subjects in each round

to choose which of two pro�les should be prioritized for a COVID-19 vaccine. In Figure

1a we replicate the AMCE and sub-group estimates for hypothetical pro�les who had low

incomes. On average, subjects were more likely to choose pro�les that were labelled low-

income relative to those on an average income, and subgroup analyses suggest the effect

of this attribute-level is conditioned by subjects' own ideological stance.

However, Figure 1b suggests the narrative is not quite as simple as the subgroup anal-

ysis would suggest. Here we plot the selection probabilities (by colour) and densities (by

height) for low-income pro�les, conditioning on both ideological self-identi�cation and the

country of each subject in the Duch et al. (2021) study. The data comprising this plot cov-

ers 82,503 forced-choices made by the 15,536 participants in the study. While we do see

a general trend that right-leaning subjects are less likely to prioritise low-income pro�les,

there is quite clear heterogeneity in this relationship acrosscontexts. For some countries –

like Brazil, Uganda, and India – the relationship is far less pronounced.

The subgroup strategy demonstrated in Figure 1a fails to capture this cross-country

variation in part because it involves a more complicated,a priori speci�cation of subgroups.

Running separate models for left and right-identifying subjects in each country would en-

tail estimating 26 separate models, each powered by far fewer observations. Even if this

were feasible, this strategy would still omit variation within the dichotomous ideological

splits. For example, subjects in Canada and the UK both exhibit notable variationwithin

right- and left-leaning subjects respectively.

We propose that in order to understand heterogeneity in conjoint experiments, re-

searchers should use methods that allow for the modelling of interactions between covari-

ates and treatment effects without imposing a priori functional form on these relationships.
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Figure 1. Impact of respondents' ideology on choosing to prioritise vaccinating low-income
pro�les

(a) AMCE estimates for the “Lowest 20% income-level" attribute-level, estimated on the full data
and subsets containing Left/Centre and Right-leaning subjects respectively.

(b) Proportion of pro�les selected (marginal mean) that contain the “Lowest 20% income-level"
attribute-level, by subjects' ideology and country. The height of the bars re�ect the number of
observations in each cell.
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Given the rich data generated by the conjoint design, we should allow the model itself to

�nd interactions between randomised conjoint attributes and subjects' characteristics.

The remainder of this section outlines a series of lower-level causal estimands that

relate to the multi-level structure of the conjoint design and that allow us to model het-

erogeneous treatment effects. We initially restrict our focus to cases where there is com-

plete randomisation of values in the conjoint experiment.3 This assumption simpli�es the

analysis and estimation of the causal parameters, and is the typical design employed by

researchers in practice. In Section 2.4, we demonstrate how our strategy can incorporate

non-uniform distributions of attribute-levels following the insights of de la Cuesta et al.

(2022).

1.1 Nested causal quantities in conjoint designs

SupposeN individuals (indexed by i ) choose betweenJ pro�les across K rounds of the

experiment. Within each round of the experiment, we randomly assign attribute-levels

acrossL attributes for each pro�le (Hainmueller et al. 2014). Having run the experiment,

the researcher faces a data structure withN � J � K rows and L + X columns (where

X are any covariates observed for each subject), from which causal parameters of interest

can be estimated.

The most common parameter estimated from this design is theaverage marginal com-

ponent effect (AMCE). This estimand re�ects the overall effect of a speci�c attribute-level

on the probability of choosing a pro�le (compared to some baseline reference level), after

accounting for the possible effects of the other attributes in the design. To account for

these other effects, the parameter is averaged over the effect variations caused by these

other attributes.

3In other words, where the probability of assigning each attribute-level is constant within each attribute and
independent of the values of other attributes.
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With complete randomisation of the attributes, and adapting the notation set by Hain-

mueller et al. (2014), we de�ne the potential outcome for a pro�le shown to a respondent

in the experiment as the (non-parametric) function:

Yijk (t l ; Tijk [� l ]; Ti [� j ]k) = g
�

Si (t l ; Tijk [� l ]; Ti [� j ]k); R ik (t l ; Tijk [� l ]; Ti [� j ]k); Pijk (t l ; Tijk [� l ]; Ti [� j ]k)
�

;

where t l is the value of the lth attribute shown to individual i , in pro�le j , of round k

of the experiment, Tijk [� l ] is the vector of values for the remaining attributes in the same

pro�le, and Ti [� j ]k is the unordered set of possible treatment vectors.4 Si , R ik , and Pijk are

respondent-, round-, and pro�le-level random components of this function.

Using the de�ned potential outcomes, the AMCE can be expressed as:

� l = E
�
Yijk (t l = l1; Tijk [� l ]; Ti [� j ]k) � Yijk (t l = l0; Tijk [� l ]; Ti [� j ]k)

�
:

By de�nition, the AMCE captures the central tendency of subjects' behavior with respect

to each attribute of the design. Often, however, researchers are interested in whether these

effects differ dependent on subject characteristics or the context of the experiment. As

others have noted, the AMCE can be disaggregated into more granular causal quantities of

interest (Hainmueller et al. 2014; Abramson et al. 2020; Zhirkov 2021). Here we formalise

this logic with respect to the structure of the data generating process itself.

First, we disaggregate the AMCE intoN individual-level effects by conditioning the

AMCE estimand on the individual-level random component of our model:

� il = E
�
Yijk (t l = l1; Tijk [� l ]; Ti [� j ]k) � Yijk (t l = l0; Tijk [� l ]; Ti [� j ]k)jSi

�
:

This lower-level parameter is theindividual-level marginal effect (IMCE), and re�ects the

change in probability for a speci�c subjecti of choosing a pro�le given an attribute-level

4In Appendix A, we generalise this speci�cation by relaxing the complete randomisation assumption. Note
also, for the sake of completeness,thatTijkl = t l .
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(compared to some reference category) averaged over the effects of all other attributes.

The estimand is similar to subgroup analysis of AMCEs – what Hainmueller et al. (2014)

call conditional AMCEs. Unlike that speci�cation, rather than subsetting the data along a

vector of covariates, we subset based on the subject identi�er and therefore consider the

conditional effect based on all of subject i 's characteristics.5

The IMCE is substantively useful because it allows researchers to inspect heterogeneity

in the treatment effects derived from conjoint experiments (Abramson et al. 2020), and

is commensurate with more general heterogeneous effect estimation strategies (Künzel

et al. 2019). By recovering a vector of individual-level estimates, researchers can compare

how non-randomised aspects of the data (i.e. subjects' characteristics) correspond to the

magnitude and direction of the individual-level predicted effects.

In turn, the IMCE can be decomposed over the repeated observations taken for that in-

dividual (i.e. the choices over pro�les subjects make across multiple rounds of the conjoint

experiment). This decomposition can be split into two steps since subjects typically see

J � 2 pro�les per round 6 First, therefore, we can disaggregate theround-level marginal

component effect (RMCE). This is the effect of a component within a speci�c round ( k)

of the experiment for a given individual:

� ikl = E
�
Yijk (t l = l1; Tijk [� l ]; Ti [� j ]k) � Yijk (t l = l0; Tijk [� l ]; Ti [� j ]k)jSi ; R ik

�
:

Finally, the RMCE can be further decomposed into anobservation-level marginal

component effect (OMCE) by conditioning on the pro�le-level random component:

� ijkl = E
�
Yijk (t l = l1; Tijk [� l ]; Ti [� j ]k) � Yijk (t l = l0; Tijk [� l ]; Ti [� j ]k)jSi ; R ik ; Pijk

�
:

5Note that subsetting on covariates relies on making some (arbitrary) split along those dimension(s). De-
spite subsetting on the identi�er, the IMCE may be moderated by covariate features that generalise across
subjects. Our estimation strategy in 2 allows for this moderation to be discovered.

6Though we note it is possible to have single-pro�le conjoint rounds.
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From an analytical perspective, the informativeness of the OMCE is limited given the

granularity of the estimand. That said, it serves a useful statistical purpose given the more

general, nested relationship between the OMCE, RMCE, IMCE, and AMCE. In particular,

by the law of iterated expectations � l = Ei

h
Ek

�
Ej [� ijkl ]

� i
.7Assuming there are no carry-

over effects across rounds, the OMCE can be thought of as an independent draw from

the individual-level distribution. The individual-level marginal effect can therefore be es-

timated by aggregating OMCEs (as we discuss in Section 2.1). Table 1 illustrates this

relationship from a data perspective. Each estimand is a nested quantity that relates to

the structure of the observed data collected via conjoint designs. As such, each estimand

covers increasingly aggregate portions of the data.

Table 1. Nested causal quantities in a conjoint experiment

Subject Round Pro�le Attribute : : : y y l 0

1 1 1 A : : : 1 0
	

OMCE
�

RMCE
9
>>=

>>;
IMCE

9
>>>>>>>>=

>>>>>>>>;

AMCE

1 1 2 B : : : 0 1
1 2 1 A : : : 0 0
1 2 2 A : : : 1 0
...

...
...

...
. . .

...
...

N 2 1 B : : : 0 1
N 2 2 A : : : 1 1

The above example re�ects the structure of observations in the data collected from a conjoint experiment
where the lth attribute has two possible levels (“A" and “B"). y is the observed forced-choice outcome in the
experiment. yl 0 is the counterfactual unobservedoutcome where the lth attribute is switched. The various
causal estimands relate to different nested sets of observations within the data.

2 Estimating the IMCE

Estimating lower-level marginal effects give us speci�c leverage over questions about the

heterogeneity of these effects. The most effective level of analysis is the individual-level,
7Subscripts under the expectation symbol indicate over what level the conditional means are taken.
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since we can analyse how the IMCE varies dependent on characteristics of the subjects.

Therefore, we propose a three step strategy to recover estimates of the IMCEs.

First, we model the relationship between the forced-choice outcome, conjoint attribute-

levels, and subject-level covariates. This allows us to estimate some function that captures

the potentially heterogeneous relationship between the conjoint attributes and subjects'

characteristics when making choices in the experiment. Second, we use the trained model

to predict counterfactual outcomes at the observation-level from which we can estimate

OMCEs. Third, following the nested logic outlined in Section 1, we aggregate these OMCE

estimates to the level of the individual in order to recover estimates of the IMCEs.

It is worth noting that researchers could use any number of possible estimators to

model subject-level heterogeneity in the �rst step. We provide a speci�c implementation

in this paper and accompanying software that uses Bayesian Additive Regression Trees

(BART) (Chipman et al. 2010), but other researchers may wish to pursue alternative types

of models. To that extent, the general approach detailed here can be considered a meta-

strategy for estimating individual-level marginal effects in conjoint designs. In Appendix

E, for example, we demonstrate our method using causal forests instead of BART (Athey

et al. 2019).

One key bene�t of this meta-strategy is that all data is included in the model when

estimating the relationship between observed covariates, attribute-level assignments, and

the conjoint outcome. This feature is in contrast to both subgroup analysis (where effects

are modelled using only a smaller number of individuals who share a covariate value) and

more recent approaches that recommend running separate models for each respondent

(Zhirkov 2021). 8 Particularly when modelling each individual separately, constraints on

8We note our strategy is a form of data-adaptive subgroup analysis, since the predicted outcomes are de-
termined by those observations closest to the datapoint after recursive partitioning of the full data. Unlike
conventional subgroup analyses, however, tree-based approaches also use the data to�nd the most infor-
mative clusters, rather than relying on researchers to specify thesea priori .
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experimental survey length may lead to large imprecision in the estimates. In our pro-

posed method, the model leverages the full support of the data, across all observations,

to discover covariate interactions that modify the causal effect at the individual-level. In

Section 4 we demonstrate the comparative performance of our method compared to a

subset-based strategy.

Moreover, by using machine learning, this method improves the analysis of potential

heterogeneity in two ways. First, it reduces researcher degrees of freedom to arbitrarily

run many subgroup analyses, which we would expect to in�ate the chances of false positive

discoveries. Second, it enables the identi�cation of more complex relationships between

variables. Common to many machine-learning methods, the model itself (rather than the

researcher) determines the �nal functional form of the relationship between the supplied

predictor variables and the outcome.

2.1 Parameter estimation

Step 1 In the �rst step, we use BART to model potential heterogeneity in the observed

experimental data de�ned as:

P(Yijk = 1jTijk ; X i ) = f (Tijk ; X i ) � f̂ (Tijk ; X i );

where Yijk is the observed binary outcome, Tijk is the vector of treatment assignments

across theL attributes, and X i is the vector of covariate information for subject i consid-

ering pro�le j in round k of the experiment. f is some unknown true data generating

process, andf̂ is an estimate of that function.

BART is a tree-based supervised machine learning strategy that models the response

surface bysummingthe predictions of many constrained individual tree models – recursive

splits of the data into ever more homogenous groups (Chipman et al. 2010). Appendix B

provides a more detailed description of the BART algorithm. In short, there are two major
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difference between BART and other tree-based methods like random forests. First, the

outcome is not the average across a set of trees. Instead each tree is a “weak learner”

that seeks to explain only the residual variance in the outcome not explained by the T � 1

other trees. In that sense, the constituent trees in the BART forest work together to predict

the full outcome (rather than all trying to predict the same outcome entirely). Second,

BART models include random variables as parameters, allowing draws to be taken from

the trained posterior. This feature entails convenient Bayesian properties that allow us to

recover variance estimates at the IMCE level, which we discuss below.

We use BART partly because the models are relatively robust to the choice of tuning

parameters (He et al. 2019), as discussed in Appendix B. These priors are set partially

with respect to the observed data, and the default parameters identi�ed by Chipman et al.

(2010) are known to perform well across data contexts (Kapelner and Bleich 2016). Cross-

validation can be used to improve model performance further, if necessary.

To estimate the BART model, we supply a matrix of “training" data at the observation-

level. The training data are simply the results of the conjoint experiment. Each row re�ects

a pro�le within a round shown to a speci�c subject. The matrix columns comprise the

observed individual decision (0 or 1) regarding that pro�le; the assigned attribute-levels

for each of the L attributes in the vignette (which vary within individuals); and covariate

columns that are invariant at the individual-level. During training, the BART algorithm

iterates through the trees in the model, many times over, updating the model parameters

to minimize the error between a vector of predictions Ŷ and the observed outcomesY.9

Step 2 Using the �nal trained model ( f̂ ), we predict counterfactual outcomes (i.e. whether

the pro�le was selected or not) changing the value of attribute-levels. Speci�cally, to re-

9We use a probit-speci�c version of BART that better handles the binary outcome typical of this type of
discrete-choice design. The probit outcomes are transformed back to probabilities prior to the computation
of OMCEs.
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cover a vector of OMCE estimates of attribute-levell1, we take z draws from the predicted

posterior using a “test" matrix which is identical to the training dataset, except each ele-

ment in the column corresponding to attribute l is set to the value l1.10 We then repeat

this process, except the value of this column is now set tol0, the reference category. This

process yields two separate matrices of dimensionsz� N , which approximate the posterior

distribution for each observation for two separate attribute values respectively (l1 and l0).

Subtracting these two matrices yields a single matrix of predicted OMCE estimates –z per

observation. To recover a parameter estimate of the OMCE, we simply average thesez

predictions for each observation to yield a vector of observation-level effects:

OMCE= �̂ ijkl =
1
z

�
f̂ (Tijkl = l1; X i ) � f̂ (Tijkl = l0; X i )

�
:

Step 3 Finally, consistent with the logic outlined in Section 1, the IMCE estimates can

then be calculated by averaging the OMCEs for each individuali :

IMCE = �̂ il =
1

J � K

KX JX
�̂ ijkl :

Uncertainty estimation We also use thez� N matrix of predicted OMCEs from the BART

model to estimate the uncertainty both at the observation and individual level. Since our

estimating strategy is Bayesian, we implement a credible interval approach to capture the

parameter uncertainty. We take the 1� � posterior interval of the OMCE-level predictions.

To aggregate this interval to the IMCE level, we concatenate the posterior draws for each

OMCE estimate, and take the�= 2 and (1 � � )=2 quantiles of this combined vector. Given

that the posterior distribution is a random variable, this credible interval indicates the cen-

10In our software implementation, z = 1000. These draws are taken using a Gibbs Sampler, obtained through
a Monte Carlo Markov Chain (MCMC) back�tting algorithm. Chipman et al. (2010) show that, with
suf�cient burn-in, these sequential draws converge to the posterior of the true data generating process
(p.275). Users can assess convergence using Geweke's convergence diagnostic test available in theBART
Rpackage (see §4.5, Sparapani et al. 2021).
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tral 1 � � proportion of the probability mass for the parameter's posterior. In other words,

since the parameter itself is random in the Bayesian framework, we are straightforwardly

estimating the range that the parameter will likely fall in.

2.2 Simulation tests of the estimation strategy

Using Monte Carlo simulations, we �nd that our method effectively detects IMCE hetero-

geneity caused by heterogeneouspreferences. We simulate a full conjoint experiment in

which subjects make choices between two pro�les. Each pro�le contains three conjoint

attributes that are randomly assigned one of two values: A1 = f a; bg; A2 = f c; dg; A3 =

f e; f g. To induce heterogeneity, we de�ne subjects' preferences over attribute levels as a

function of two individual-level covariates varying this relationship across attributes. The

�rst covariate c1 is a binary variable drawn from a binomial distribution of size 1 with

probability 0.5; the second covariate c2 is a continuous variable drawn from a uniform

distribution with bounds [-1,1].

We de�ne the change in utility as a result of observing the second level for each at-

tribute as follows:

� UA 1 �

8
>><

>>:

N (� = 1; � = 1) ; if c1 = 1

N (� = � 1; � = 1) ; otherwise.

� UA 2 �N (� = jc2 � 0:2j; � = 1)

� UA 3 �N (� = 0; � = 0:5)

We then simulate the conjoint experiment run on 500 subjects, for 5 rounds each, in

which individuals choose between 2 pro�les. For each observation, we calculate the utility

for subject i given pro�le j in round k as:

Uijq = I(A1 = b) � � UA 1 + I(A2 = d) � � UA 2 + I(A3 = f ) � � UA 3 + �;
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where � � N (0; 0:0005)adds a small amount of noise to each utility calculation (to prevent

exact draws).

For each round j that subject i sees, the pro�le that yields the higher change in utility

is “chosen" (Y = 1), and the other is not ( Y = 0). This mimics the technical dependence

between observations that forms the basis of the discrete choice design.

Given this speci�cation, the BART estimation strategy should predict heterogeneous

IMCEs for the �rst two attributes (A1 and A2) but not for the last attribute (A3). Since

tree-based ML methods operate by partitioning the data, our strategy should easily identify

the dichotomous IMCE relationship with c1. The IMCEs for A1 should be positive when

c1 = 1, but negative when c2 = 0. We should observe no correlations betweenc1 and

A2. The covariatec2 poses a harder challenge for our estimation strategy for two reasons.

First, subdivision of the data cannot perfectly partition the IMCEs since the covariate is

continuous. Second, the de�ned relationship is more complex and asymmetric over the

covariate's range. The strongest positive effects should occur fornegativevalues, and the

weakest effects whenc2 = 0:2. We anticipate no correlation between c2 and attribute A1

or A3.11

Figure 2 demonstrates the results of this experiment, colouring predicted IMCEs by

the values of c1. Our strategy effectively discovers heterogeneous IMCEs when the het-

erogeneity over preferences is a function of a binary variable – the positive and negative

preferences perfectly correspond to the values of this covariate. Conversely, in the third

facet, the completely random assignment of utility across individuals yields no sign of

heterogeneity in IMCEs nor correlation betweenc1 and the size of effects.

Importantly, the model discovers the de�ned heterogeneity for the A2 IMCEs but this

heterogeneity does not exhibit correlation with c1. Instead, as Figure G1 in the Appendix

11In Appendix C4 and E1 we replicate this exercise using the Zhirkov (2021) OLS and Athey et al. (2019)
causal forest methods, respectively.
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Figure 2. Detecting heterogeneity in IMCEs using simulated conjoint data derived from
preferences over pro�les

Point estimates of the IMCEs for 500 subjects shown with 95% Bayesian intervals (as described in Section
2.1)

demonstrates, the heterogeneity correlates as expected with values ofc2. This separation

between heterogeneity detection and its correlation with covariates is important. Under

a conventional, subsetting strategy, the analyst would likely also note that conditional

AMCEs for A2 do not covary with c1. However, subsetting based onc1 would not indicate

that there is substantial heterogeneity to the marginal component effect. We conjecture

that as the complexity of the covariance between covariates and IMCEs increases it will

become harder for the analyst to adequately pre-specify models that would be capable of

detecting this heterogeneity.

Table 2 reports the average correlations between the covariatesc1 and c2 and the three

distributions of IMCEs respectively. There is an almost perfect correlation betweenc1

and A1, but negligible correlations between the same covariate and A2 and A3. With

respect to c2, we see a substantive correlation with A2 but, as expected, the magnitude

is moderated by the non-linear and asymmetric relationship imposed. Again, there are
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negligible correlations for A1 and A3.

Table 2. Average correlations between simulation covariates and conjoint attributes, over
100 simulations

Attribute c1 c2

A1 0.998 0.000
A2 0.004 -0.557
A3 -0.003 0.074

We extend this discussion of the simulated performance of our method in the Appendix.

In Section C1 we demonstrate that the estimation method exhibits good predictive accu-

racy when IMCEs themselves are simulated across DGPs of varying form and complexity.

We also �nd that our variance estimation strategy exhibits good coverage (Section C2). Fi-

nally, we test whether RMCEs can be used to detect whether effects are serially correlated

by round (a violation of a conjoint experiment's assumptions) in Section C3.

2.3 Applied test of BART-estimated AMCEs

Under the various conjoint design assumptions, parameter estimates of the AMCEs from

a linear probability model (LPM) are unbiased (Hainmueller et al. 2014). In Section 1,

moreover, we note that the AMCE estimand can be considered the average of the IMCEs

across subjects. Therefore, if our our estimation strategy is performing well, we expect that

averaging the BART IMCEs will be very similar, if not the same as, the unbiased AMCEs

estimated from a LPM.

As an applied sense check of our method, we test this empirically using data from two

conjoint experiments. First, we analyse the archetypal experiment by Hainmueller et al.

(2014) where U.S. subjects made a series of forced-choices between two pro�les describ-

ing potential immigrants, indicating which they would prefer to admit. The attributes

presented in the pro�les re�ected traits hypothesized to matter in typical immigration de-
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cision making, including the migrant's profession, country of origin, and language skills.

Second, we analyse the previously discussed COVID-19 vaccine conjoint �elded by Duch

et al. (2021).

Figure 3 plots the point estimates of each (non-reference) attribute-level using our

BART strategy and those of the conventional LPM approach, for both datasets. In both

cases, and for every point estimate pair, we see that the predicted effects are very similar.

These results are strongprima facieevidence that the BART model is appropriately estimat-

ing the response surface: the individual-level effects do, in practise, aggregate correctly to

the AMCE. In Appendix D, we provide further estimation details for the Hainmueller et al.

(2014) data, and Appendix Tables D1 and D3 report the LPM andcjbart coef�cient esti-

mates as well as the percentage differences between them.

Figure 3. Comparison of conventional GLM-derived AMCE to AMCEs recovered from the
BART estimated IMCEs

2.4 Non-independent randomisation of attribute-levels

So far, we have assumed that attributes are completely and independently randomised,

which is by far the most common type of conjoint design in practise (de la Cuesta et al.
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2022). However, as others have noted, it is possible and informative to consider non-

uniform distributions of pro�les that better correspond to real-world pro�le distributions

(Hainmueller et al. 2014; Bansak et al. 2021; de la Cuesta et al. 2022). This adapta-

tion is also possible at the individual level – and following these new works, we call the

population-weighted quantity of interest the population-IMCE (pIMCE).

Similar to the model-based approach discussed in de la Cuesta et al. (2022), we ap-

proach this challenge as a post-hoc exploratory analysis of existing conjoint data.12 As

before, we �rst use the observed experimental data to train a BART model. Adapting the

previous strategy, we then predict a full set of counterfactual potential outcomes for every

combination of the L � 1 attributes in the design, for each subject (holding constant the

individual-level covariates). We generate two matrices of predictions: one setting the lth

attribute to l1 and the other setting the same attribute to the reference level l0. We then

take the difference of these two matrices to generate a matrix of hypothetical OMCEs for

each potential outcome.

To estimate the pIMCE, we then marginalize the IMCE over the pro�le distributions

at the individual-level. In practise, we take a weighted average of the predicted OMCEs,

using researcher-speci�ed marginal probabilities for the L � 1 attributes. The weight for

a speci�c partial pro�le (ignoring the Lth attribute) is calculated as the product of the

marginal probabilities for every other attribute-level in the pro�le:

wTijk [� l ]
= P(Tijk [� l ]) =

Y

l06= l

P(Tijkl 0):

Since our BART strategy takesz draws from the posterior, we calculated the weighted

sum over the OMCEs for each draw separately, and then take the average over these indi-

12We leave it to future research to consider how design-based conditional randomisation could be imple-
mented in ML-based heterogeneity strategies.

20



vidual predictions to generate our pIMCE estimate:

pIMCEil = Ez

� X

Tijk [� l ]2 T ijk [� l ]

(�̂ ijkl � wTijk [� l ]
)
�
;

where the subscript z indexes draws from the model posterior, and Tijk [� l ] is the set of

possible attribute-level combinations across theL � 1 other attributes.13

While this adaptation is relatively straightforward from a theoretical perspective, it

comes at a computational cost. As the number of attributes (and attribute-levels) increases,

the number of potential outcomes that need to be predicted in�ates rapidly. Compared to

the standard strategy, the number of predictions increases by the factorial of the number

of levels for the L � 1 other attributes in the design. Researchers will want to narrow their

analysis to speci�c population pro�les, otherwise the computational demands will quickly

become infeasible. We present an example of estimating pIMCEs in Appendix F.

3 Comparing Sources of Heterogeneity

A particular attraction of heterogeneous effects estimation is that we are able to test

whether treatment effects differ at the individual-level. To date, however, researchers have

lacked principled methods of characterising any observed heterogeneity. In this section,

we propose two tools researchers can use to systematically recover indicators ofwhich co-

variates are driving heterogeneity in the marginal treatment effects and the interactions

between variables.14 Both tools rely on tree-based learning methods to group the predicted

IMCEs based on covariate information. In general, tree-based modelling approaches are

well suited to this type of problem since they work by partitioning the outcome variable

into clusters (or terminal nodes) where the differences in outcomes between members of

13Similar to the standard strategy, we also recover credible interval uncertainty estimates by taking the �
2

and 1 � �
2 quantiles over the weighted distributions.

14Tools to implement these methods are available in our R packagecjbart .
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the same cluster are as small as possible (Breiman et al. 1984).15

We �rst introduce a standardised variable importance (VIMP) measure that summarises

how well different covariates predict each distribution of IMCEs. This measure can be used

to explore the potential sources of heterogeneity in the marginal component effects sys-

tematically across all attributes in the experiment. Second, we show how single regression

trees can subsequently be �t to better inspect the determinants of heterogeneity for speci�c

attribute-levels of interest. This second step builds on the VIMP analysis by using the tree's

decision rules to identify clusters, de�ned by subject covariates, that best de�ne this het-

erogeneity. For each cluster, researchers can recover the conditional marginal component

effect and thus analyse the extent of heterogeneity in the treatment effects.

3.1 Random forest variable importance

Our �rst tool summarises which covariates matter for predicting differences in the IMCE

distributions for all attribute-levels in a conjoint experiment. We use random forests to

estimate the relationship between the predicted IMCEs and subject-level covariates. Ran-

dom forests operate by estimating many separate decision-trees, where the training data

is bootstrapped across trees, and each tree considers only a random subset of variables.

The result is an ensemble model that is less prone to bias (Breiman 2001). We then use

variable importance metrics recovered from the trained random forest to identify vari-

ables that are particularly predictive of heterogeneity. In turn, these variables can drive

subsequent analyses which we present in Section 3.2.

More formally, for each attribute-level, we train a random forest to model the hetero-

geneity in the predicted IMCE distribution. We use the matrix of subjects' covariate infor-

mation ( X ) as the predictor variables. Once this model has been trained, we then recover

15We use additional ML techniques since our BART strategy, while excellent at estimating effects, is more
limited in terms of analysing the drivers of this heterogeneity (Hill et al. 2020).
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variable importance measures (VIMPs) – a common form of model analysis for tree-based

methods – to understand which covariate dimensions are most useful for partitioning the

data.

In general, VIMP measures work by measuring the degradation in model performance

when noise is added to a predictor variable. A larger drop in performance is indicative that

the variable in question is more important for predicting the outcome. For our purposes,

we use VIMP scores to measure how well the included subject covariates predict each

vector of IMCEs. Higher importance scores suggest that partitioning the IMCEs on these

variables is informative. We use the Breiman-Cutler approach, which randomly permutes

the predictor variable and measures the standardised difference in prediction error when

using the original data compared to this permuted data. Taking advantage of recent devel-

opments in VIMP theory, and noting earlier critiques of bias in VIMP measures (Strobl et al.

2007), we recover bias-corrected variance estimates of these VIMP scores using delete-d

jackknife estimation, as developed by Ishwaran and Lu (2019).

The importance of different subject-level covariates may differ dependent on the spe-

ci�c attribute-level in question. We therefore recover separate VIMP scores for each com-

bination of attribute-level and subject covariate, allowing us to plot a heatmap of variable

importance across the design as a whole. In Section 4 we demonstrate how this schedule

of VIMP scores can be analysed to understand what drives heterogeneity for each attribute-

level in the conjoint experiment.

3.2 Single decision tree partitioning

The random forest VIMP tool compares how well subject-level covariates predict each

IMCE distribution. Given its reliance on random forests, however, it is less useful for sub-

stantively interpreting the partitioned IMCE space. The �nal model contains many trees,

where each individual tree only considers a random subset of variables and a bootstrap
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sample of the data. We therefore propose a complementary tool that �ts a single decision

tree on an attribute-level of interest. Like the random forest model, the single-tree model

recursively partitions the vector of IMCEs using a matrix of covariate information. Unlike

the random forest method, since only one model is �t the individual splitting rules from

this tree can be directly interpreted and used to inspect the heterogeneity in the IMCEs.16

Single tree models typically �t many splits to the data, making interpretation dif�cult.

This feature re�ects the inherent trade-off in machine learning methods between the com-

plexity of the �t model and the risk of mispredicting observations. In other words, a more

complex tree may reduce prediction error (in training) but the incurred complexity re-

duces the variance of the model (leading to over�tting). Therefore, to ensure the tree is

interpretable, we follow the convention of “pruning" the �t model. Since the partitioning

is recursive and “greedy", earlier splits in the tree are those that provide the greatest lever-

age over differentiating observations.17 By removing later splits, pruning has the effect

of paring back the cluster de�nitions (i.e. the combination of decision rules) to a more

parsimonious level.

In practice, trees are pruned by setting a complexity parameter (cp). In the case of

continuous outcomes, this determines the minimum increase in the overallR2 of the model

needed in order for a split to be kept in the model (Therneau et al. 1997). For the purpose

of interpreting IMCE heterogeneity, we �nd that a complexity parameter of about 0.02-

0.04 is suf�cient to constrain the decision-tree to a depth that is substantively meaningful

– yielding about 2 - 3 levels of partitioning.

Post-pruning, researchers can use the �t model to describe the underlying heterogeneity

in the IMCE distribution. One very useful feature of decision trees is that, in this context,

16A similar strategy has been pursued by Hahn et al. (2020).
17In a recursive partitioning algorithm, the �rst split selects that variable (and cutting point) which minimizes

the loss function associated with the resulting two partitions of the data. This process is then repeated for
each child node, holding �xed the initial split. The fact that the parent split is not re-evaluated once the
next layer of decision rules are determined means that the algorithm is “greedy".
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the terminal nodes re�ect the conditional average marginal component effects de�ned by

the splitting rules in the tree. This is similar to estimating marginal component effects for

speci�c subgroups. Crucially, unlike manual subsetting approaches where subgroups have

to be speci�ed a priori , with a decision tree the clusters arediscoveredduring model �tting

itself. This is particularly useful since the tree, splitting sequentially on multiple variables,

may de�ne complex groups. For example, it may �nd a stronger effect for subjects aged

under 25 years old and who are ideologically left-leaning compared to left-leaning but

older respondents. We illustrate this approach in the next section.

4 Analysing heterogeneity in a multi-national conjoint experi-

ment

In this section, we consider an application of the framework and estimation strategy out-

lined in Sections 1 and 2. We analyse heterogeneity in a very large conjoint experiment

that encompasses a diverse group of subjects surveyed from 13 countries, and then com-

pare our approach to a recent alternative strategy proposed in Zhirkov (2021).

Detecting heterogeneous effects Our data is taken from the Duch et al. (2021) multi-

national study on COVID-19 vaccine prioritization. This experiment asks subjects to choose

which of two hypothetical individuals should be given priority for a COVID-19 vaccine.

Each pro�le displays �ve attributes – the recipients' vulnerability to the virus, likely trans-

mission of the virus, income, occupation, and age – and all values are totally randomly

assigned. Subjects make a total of 8 choices in the experiment. The data also contains

information on subjects' country of origin, age, gender, ideology, income, education, hesi-

tancy over vaccination, and measures of their willingness to pay for a vaccine.

The original study �nds consistent AMCEs across all the countries surveyed. Neverthe-

less, it is reasonable to suspect that these AMCEs may mask heterogeneity with respect
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to individual-level covariates. This experiment is particularly suited to a study of hetero-

geneous effects, since with approximately 250,000 observations in total and harmonised

covariate information across countries, there is ample data to model complex relationships

(at the cost of computational intensity). To take advantage of the diversity of our data,

we train a BART model on all �ve conjoint attributes and the set of covariate informa-

tion for each pro�le using cjbart , using all observations from the 13 countries surveyed

in the experiment. From this model, we recover a schedule of IMCE estimates for each

attribute-level.

With multiple covariates, however, systematically identifying the drivers of heterogene-

ity is dif�cult. This is particularly acute in the case of conjoint experiments where we have

separate IMCE vectors for each attribute-level, which means researchers are faced with

a dense schedule of predicted effects. We address this challenge by using the tree-based

measure of variable importance, as discussed in Section 3.1.

We use our proposed VIMP tool as the �rst step in identifying plausible sources of

heterogeneity in the schedule of IMCEs estimated from the Duch et al. (2021). The method

estimates a standardised importance score for each combination of the 10 covariates and

16 attribute-levels in the conjoint design. Figure 4 provides a graphical summary of how

well each covariate predicts the attribute-levels in the Duch et al. (2021) conjoint. Clearly,

the country of a respondent is a highly predictive factor across most attribute-levels in

the model. This is perhaps unsurprising, given the diversity of contexts considered and

differing levels of COVID-19 infections at the point the experiment was �elded.

Most interestingly, some subject-level variables appear to condition IMCEs for speci�c

attributes. For example, while subjects' age is not a particularly important predictor of

heterogeneity across most attributes, it is very predictive when considering the age of the

potential vaccine recipient. In general, this suggests that whether one is willing to priori-

tise individuals based on age may well be driven by one's own age (which we explore in
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Figure 4. Variable importance matrix having estimated separate random forest models
on each attribute-level in the model. Higher values indicate variables that were more
important in terms of predicting the estimated IMCE distribution

more detail below), and second that this is perhaps most important for the 65 year old la-

bel where the risks of COVID-19 begin to become more severe. Similarly, ideology appears

particularly important when partitioning the IMCEs related to the potential vaccine recip-

ient's income. This result accords with conventional expectations about the relationship

between political ideology and service provision, and highlights that one's own ideological

position appears to predict how willing one is to prioritise those on low incomes.

Given the results from the VIMP summary measure, we can use our second proposed
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tool described in Section 3.2 – a single pruned decision tree – to inspect this heterogeneity

in more detail. On the basis of the variable importance heatmap in Figure 4, for example,

we would expect that subjects' age is used to partition the IMCE vectors for prioritising

subjects of different ages.

Figure 5 presents a single decision tree for the IMCEs related to prioritising vaccines

for “65 year olds". Note �rst that the split con�rms the VIMP analysis results in Figure 4

that identify subject's age as an important source of heterogeneity for this attribute-level:

older subjects (over the age of 37) exhibit a predicted average marginal effect (0.11) that

is about 20 percent larger than younger subjects. Notably, moreover, this partitioning

strategy captures more complex interactions between covariates.The smallest IMCEs are

de�ned by younger subjects (< 37) in India and Uganda. Conversely, the strongest effects

are for those subjects older than 37 resident in the UK, US, and France (countries with

older-aged populations), and those resident in other countries who are above the age of

69 (and thus closest in age to the pro�le age).

These two complementary tools, the VIMP analysis and single decision tree, provide

a comprehensive and robust way to identify sources of treatment effect heterogeneity in

conjoint experiments. Finally, we demonstrate one further way of summarizing these re-

sults visually by plotting the full ordered distribution of IMCEs for a given variable against

the corresponding distribution of a covariate. Figure 4 suggests that subjects' ideology is

an important predictor of IMCEs for the income-related attribute-levels in the conjoint ex-

periment. In Figure 6, therefore, we visualize this particular relationship by plotting the

IMCEs against a histogram of subjects' self-reported ideological postion..

As Figure 6 shows, there is quite clear and distinct heterogeneity. Smaller IMCEs

(around the 0.01 mark) are individuals whose ideology is right-leaning (at or above 6

on a 0-10 scale). In contrast, larger IMCEs are predicted for those who are typically more

left-leaning. Clearly, however, ideology does not play a perfect role. Within these two por-
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Figure 5. Pruned decision-tree of predicted IMCEs for prioritising vaccines for those “65
years old", using subject-level covariate information to partition the vector of individual-
level effects.

tions of the distribution, varying degrees of ideology are more uniformly distributed, and

at the very right of the IMCE distribution other factors appear to drive a further uptick in

the predicted IMCE, to approximately four times the effect size of right-leaning subjects.18

Comparison to OLS-based approach To demonstrate the comparative performance of

our approach, we also estimate IMCEs using an alternative strategy proposed recently by

Zhirkov (2021). In short, this method estimates separate OLS regression models for each

18To assess the robustness of these results, and to check for over�tting, we re-estimated these models using
smaller random subsets of the data. Appendix Figure G2 demonstrates that despite fewer observations
these models also identi�ed similar correlations between the income IMCEs and subjects' ideology, with
left-leaning subjects typically having higher AMCEs on average (andvice versa). Separately, in Appendix
Figure G3, we show an example from the same model of an attribute-level where there is no apparent
correlation between ideology and the substantial heterogeneity observed in the IMCEs.
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Figure 6. Comparison of IMCEs for the “Lowest 20% income level" attribute-level ordered
from smallest to largest and corresponding histogram of individuals' self-reported ideology.

The grey ribbon indicates 95% credible intervals for the IMCEs, and the blue line in the top panel indicates
the estimated AMCE

subject separately. The resultant coef�cients are unbiased estimates of the same IMCE

quantity we outline in Section 1.

Our method �nds a strong correlation between individuals' ideology and the predicted

IMCEs for the low income attribute-level of the Duch et al. (2021) experiment. Under the

Zhirkov (2021) OLS strategy, we expect to see a similar result – both in terms of the dis-

tribution of IMCEs and its correlation with individuals' self-reported ideology. To test this

expectation, we estimate separate LPMs for each individual in our data and, again, com-

pare the ordered distribution of IMCEs to a corresponding histogram of subjects' ideology.

Two practical features of the regression approach complicate this analysis using OLS.

Since each subject completed eight rounds of the conjoint experiment (a number we think

is quite typical for a conjoint design), each model has only 16 observations (2 pro�les
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per round) and thus the individual models will be imprecise. Zhirkov (2021) directly

acknowledges this limitation, and notes that the OLS approach requires subjects to rate

closer to 30 pro�les in total. We believe that, while this large number of activities may be

feasible in principle, we rarely see this number of pro�les in practice.

Moreover, even if the number of observations approaches 30, Zhirkov (2021) recom-

mends using interval rating scales rather than the binary, forced-choice outcome. While

many conjoint experiments implement both rating and forced-choice scales of measure-

ment, we believe the forced-choice outcome is the most interesting aspect. It allows us

to think of the effects directly in terms of marginal probabilities, and thus to consider the

behaviour of subjects (a choice of candidate) rather than just an attitude (the subjects'

rating of two candidates). 19

Figure 7 displays the ordered distribution of estimated IMCEs using this OLS strategy,

plot against a histogram of individuals' self-reported ideology. The OLS approach yields

5,369 IMCE estimates outside of the range of possible changes in probability. We exclude

these estimates from our analysis, leading to a 34 percent reduction in the number of

IMCEs we can inspect.20 We do not observe the same correlation as in our BART estimation.

The correlation coef�cient between the IMCEs and ideology in the OLS case is negligible

and statistically insigni�cant ( r = � 0:01; p = 0:20) compared to a strong correlation with

respect to BART (r = � 0:75; p < 0:001). Looking at the distribution of IMCEs, moreover,

the OLS strategy does not seem to have modelled the data well. The distribution is very

symmetric, centred on zero and with tails that contain implausibly large effects.

While these are not the ideal conditions for the Zhirkov (2021) approach, our vaccine

experiment resembles a typical conjoint design with 16 observations per individual. Our

19This is consistent with the Bansak et al. (2022) �nding that the estimated AMCEs from forced-choices of
political candidates map well to actual election outcomes. Moreover, in Section C4 of the Appendix we
present simulation evidence that even when we adapt designs to meet this requirement, heterogeneity in
preferences is less well detected using interval rating scales.

20Of these individuals, only 5935 uncertainty estimates were parametrically recoverable.
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Figure 7. Comparison of estimated IMCEs using OLS method proposed in Zhirkov (2021),
on the “Lowest 20% income level" attribute-level within Duch et al. (2021)

OLS comparison con�rms Zhirkov's (2021) recommendation that the OLS method should

only be implemented for conjoints with at least 30 observations per individual. A strength

of the BART estimation is that it generates robust estimated IMCEs for conjoint designs

with a wide range of choices per individual in the sample. A distinct advantages of our

ML approach is that it can leverage all observations in the data and hence our estimation

strategy is less reliant on having many observations per experimental subject.

Perhaps most importantly, our approach is able to detect and capture how subject co-

variate information modi�es the size and direction of these marginal component effects.

The OLS method rests on the fact that this heterogeneity is implicitly detected when the

marginal effects are modelled for each individual separately. In our proposed method,

since the trees in the BART model can identify interactive effects between the supplied co-

variates and the attribute-levels, it can explicitly model these effect modi�ers. The result,
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in this case, is that our method identi�es the correlation between subjects' ideology and

their treatment of low-income vaccine recipients in a way that the OLS strategy does not.

5 Discussion and Conclusion

The attraction of conjoint experiments is a rich data generating process that allows us to

tease out the choice characteristics that shape individuals' decision making. This type of

experimental design is fast becoming one of the dominant experimental methods within

the social sciences. A rich methodological literature is developing that explores how ad-

vances in conjoint estimation can enhance its informative value. Others, for example, have

explored how to improve generalizability by weighting pro�le distributions to their actual

occurrence in the populations of interest (de la Cuesta et al. 2022), and how to use eye-

tracking software to better understand the decision-making process and the processing of

conjoint vignettes (Jenke et al. 2021).

We make a small contribution to this wider development, by clarifying how the con-

joint design relates to the structure of the data collected, and how we can leverage the

nature of this data generation to estimate heterogeneous treatment effects across conjoint

attributes. Heterogeneity can be characterized in terms of a set of nested, causal estimands

that correspond to the repeated observations across individuals, rounds, and pro�les of the

conjoint design. Using machine learning tools, we show how to estimate heterogeneous

treatment effects in the conjoint design using the potential outcomes framework. Our

strategy allows researchers to assess treatment effect heterogeneity in a straightforward

and �exible manner.

We suggest that machine learning is particularly useful given its ability to identify more

complicated relationships between predictor variables without the need for researchers to

specify thesea priori . By reducing researcher degrees of freedom, our proposed general
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method provides a more robust means of analysing heterogeneity compared toad hoc

subgroup analyses. Moreover, since our estimation strategy leverages all observations in

the modelling stage, our method has greater statistical power than approaches that rely

on estimating separate subset models.

Notwithstanding these advantages, there are also limitations to our estimation strategy.

Principally, our BART modelling strategy assumes that conditional on the observed covari-

ates, outcomes depend only on the assigned treatment values. In other words, two indi-

viduals with identical covariate pro�les and the same attribute-level assignments would

get assigned the same predicted OMCEs. This is, in part, a limitation of the underlying

BART algorithm, with limited development of cluster-speci�c estimation. Future research

may wish to implement recent advances in random intercept modelling to better capture

these latent effects (see Tan et al. 2018).

More generally, and as with many ML methods, over�tting the training data can lead

to poor generalisability of predictions to the population of interest. As we have pointed

to in the paper, researchers can assess these issues by, for example, estimating models

on subsets of the data to ensure the �ndings replicate. Moreover, ML models can be

sensitive to the choice of hyperparameter values. As we note earlier, we chose BART

because of its greater resilience to these issues: BART predictions are relatively stable over

hyperparameter choices, and the Bayesian priors provide strong regularisation to prevent

over�tting (Chipman et al. 2010; Hill et al. 2020). Other ML implementations, for example

causal forests, offer separate tuning algorithms to limit over�tting, and we recommend

researchers take this step seriously.

To accompany this paper, we provide a newRpackage,cjbart , that allows researchers

to use our method on their experimental conjoint data. More generally, however, our

proposed meta-strategy could be used with other forms of modelling. For example, re-

searchers may wish to use random forests or neural networks instead, and we provide one
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such alternative example in Section E of the Appendix.

Finally, estimating heterogeneity – that is, generating individual-level estimates of

treatment effects – is only half the battle. Once researchers recover these individual-level

estimates, the challenge is to identify the most signi�cant sources of heterogeneous treat-

ment effects. We provide two complementary tools that help researchers make sense of

the estimated distribution of individual-level effects. We demonstrate how random forests

variable importance measures (VIMP) can be used to summarise which variables are most

important for predicting heterogeneity in the IMCEs. We then show how single regression

tree models can be used to partition IMCE distributions into clusters, where the decision

rules provide information about which covariates de�ne those clusters. This paper also

shows how these results can be visualized to aid analysis.
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A Further information on estimands and estimates

The main paper speci�es the potential outcomes under the assumption of complete ran-

domisation. Statistically, this assumption means that every possible combination of values

across attributes is equally likely and there are no prohibited combinations. Not only is

this assumption satis�ed in many applications, but it also considerably simpli�es the esti-

mation. In some scenarios, however, researchers may impose restrictions to prevent im-

plausible combinations of attributes. For example, if each pro�le is a political campaign,

the average donation to a campaign could not exceed the total amount of donations.

In these cases, as shown by Hainmueller et al. (2014), the AMCE estimand must condi-

tion on the possibility that the remainder of the treated pro�le and the vector of other pos-

sible treatment options are in the intersection of the supports (T ) of p(Tijk [� l ] = t; Ti [� j ]k =

t jTikl = l1) and p(Tijk [� l ] = t; Ti [� j ]k = t jTikl = l0), where t is the vector of all other attribute

values for the j th pro�le in round k, and t is the set of possible vectors of all attributes in

the other pro�le.

In our framework, by relaxing this assumption, the IMCE estimand becomes:1

� il = E
�
Yijk (t l = l1; � � � ) � Yijk (t l = l0; � � � )j(Tijk [� l ]; Ti [� j ]k) 2 ~T ; Si

�
;

the RMCE becomes:

� ikl = E
�
Yijk (t l = l1; � � � ) � Yijk (t l = l0; � � � )j(Tijk [� l ]; Ti [� j ]k) 2 ~T ; Si ; R ik

�
;

and the OMCE becomes:

� ijkl = E
�
Yijk (t l = l1; � � � ) � Yijk (t l = l0; � � � )j(Tijk [� l ]; Ti [� j ]k) 2 ~T ; Si ; R ik ; Pijk

�
:

This logic follows from the fact that these quantities are conditional variants of the

1For the sake of notational simplicity, we replace Tijk [� l ]; Ti [� j ]k in each of the potential outcomes with “ � � � ".
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AMCE, which itself is conditioned on the joint support of the probabilities of the two

conditional potential outcomes.

B Further information on the BART estimation strategy

As we note in the main text, Bayesian Additive Regression Trees (BART) are a tree-based

machine learning strategy for prediction and classi�cation, developed by Chipman et al.

(2010). In this section, we provide a more detailed explanation of the algorithm for inter-

ested readers.

The underlying principal of BART is that the outcome of interest y can be decomposed

into smaller parts. Therefore, an individual outcome yi can be described as a function of

covariatesx i such that,

yi = f (x i ) �
TX

t=1

gt (x i ) + �; � � N (0; � 2);

where t indexes a set of functionsgt that in summation approximate the true data-generating

function f .

In the BART model, eachgt is a tree-model, where the input data is recursively subset

using a series of splitting criteria. We call each point where the data is split into two

subsets a non-terminal node. Each non-terminal node has two child nodes, which may

themselves either be non-terminal (i.e. they split the data again) or terminal. A terminal

node represents a �nal subset of the data, determined by the conjunction of splitting rules

of its ancestors.

The Bayesian aspect of these tree models comes from the fact the model assumes a

prior over the structure of eachtree (i.e. the number, position, and splitting criteria of

non-terminal nodes), the terminal node parameters themselves, and an independent error

variance prior. With regards to the tree structure, for example, whether any given node is
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non-terminal is determined by the prior probability,

� (1 + d)� � ; � 2 (0; 1); � 2 [0; 1 );

where � and � are hyperparameters that can be speci�ed by the researcher. The default

values set by Chipman et al. (2010) (� = 0:95; � = 2) are designed to heavily constrain

each tree so they are small, which helps prevent the model from over�tting (Hill et al.

2020).

The terminal-node parameters differ substantially from regular tree-based methods.

Unlike in conventional trees where the terminal node parameters of the tree are simply

the conditional expectations of the observations in that partition, in a BART model these

parameters are de�ned as random variables. In particular, the prior for each leaf node (i)

in tree (j) is de�ned as:

� ij = N (0; � 2
� ); where� � = 0:5=k

p
m;

where m is the number of trees in the model and k is a hyperparameter choice of the

researcher – Chipman et al. (2010) recommend a default value of 2, on the basis of cross-

validation evidence.

Finally, the error variance prior is drawn from an inverse-gamma distribution, with a �

parameter set using the data, to give a 90% (default) chance that the model will yield a

root mean squared error (RMSE) value lower than from an OLS regression.

There are, as a result of this prior speci�cation, several hyperparameters that can be

speci�ed by the researcher. As several authors note, the cross-validation exercises and

resultant default parameters provided by Chipman et al. (2010) are known to perform

well across a variety of contexts (Kapelner and Bleich 2016; Carnegie and Wu 2019; Hill

et al. 2020). That said, researchers can perform cross-validation of these parameters on
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their speci�c dataset to see if they can achieve better performance.2

Since we sum these individual models, we do not want the models to predict the same

part of the variance of the outcome. Using the metaphor of a forest, we do not want

the canopy of the trees to overlap. Instead, each tree should “develop" (by growing or

shrinking) to cover only that part of the forest canopy not covered by the remaining trees

in the forest. During training, therefore, the algorithm sequentially updates each individual

tree model, conditional on the current performance of the rest of the trees. Speci�cally,

for each tree t, the model �rst calculates the “residual variance" ( Rt ) or the portion of the

variance in y that is not explained by the remaining T � 1 trees:

Rt = y �
X

j 6= t

f j (x ):

The algorithm then updates the structure of tree t in an attempt to improve perfor-

mance over Rt . To do so, the algorithm probabilistically makes one of the following

changes: splits a terminal node (p=0.25), removes the child nodes of a non-terminal

node (p=0.25), swaps split criteria across two non-terminal nodes (p=0.1), or alters the

splitting criteria for a single non-terminal node (p=0.4). Once a change has been made,

the model decides whether to keep this change using the Metropolis Hastings MCMC al-

gorithm. 3

This process is then repeated for every other tree in the model, sequentially, and �-

nally the model updates the error variance of the model as a whole (� ) (Kapelner and

Bleich 2016). This entire process is repeatedk times, as de�ned by the researcher. As

Chipman et al. (2010) note, since BART only updates one tree at a time, and in sequence,

it is only ever making small changes to the overall prediction, allowing it to �ne tune its

2The cjbart package allows users to pass speci�c hyperparameter arguments (see Sparapani et al. 2021) to
the underlying BART algorithm via the cjbart(...) function.

3Note that this acceptance decision is constrained byRj but also by the prior state of the tree being updated,
and hence is regularized by the initial priors over the tree structures.
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performance via small additions and subtractions.

Post-training, predictions are made by taking draws from the model posterior. In prac-

tise, a “draw" is simply the result of passing a covariate vectorx i down each tree in the

BART model and summing the results. More formally, a single draw from the trained BART

model can be denoted:

ŷ(b)
i =

TX

t=1

ĝt (x i );

where the superscript notation indicates the bth draw from the trained BART model, and

ĝt is the �nal tth tree-model optimised via the training algorithm discussed above.

As Chipman et al. (2010) show, with suf�cient training, the BART model will converge

on the posterior distribution of the true data-generating function. Recall that since the

parameters of the model are random variables, repeated draws using the same covariate

vector will yield different predicted values. Therefore, to generate the �nal prediction ŷi ,

we can repeat this processB times to get a posterior distribution of predictions (typically

1000) and then take the average:

ŷi =
1
B

BX

b=1

ŷ(b)
i ;

The set of posterior draws, moreover, can be used to quantify the uncertainty of the

estimate, as discussed in Section 2.1 of the main paper.

C Simulation protocols and further details

C1 IMCE prediction

To test the accuracy of the IMCE predictions, we simulate datasets with two binary at-

tributes where the IMCE is de�ned with respect to a series of covariates, and across simu-

lations we vary the relationship between these covariates and the IMCE. Since we wish to
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benchmark the performance of the model against "known" IMCE values for an attribute,

which crucially is not the change in probability of choosing one pro�le over another pro-

�le, in this simulation exercise we assume independence between all observations. This is

very similar to the assumptions made in a conventional conjoint experiment, from which

the AMCE (and as we argue IMCE) are recovered. Hard-coding this independence into the

data-generating process allows for better control over the size and shape of heterogeneity.

To illustrate this strategy, suppose we observe two covariates –c1 and c2 – that are in-

variant at the individual-level, and randomly assign to each observation two dichotomous

attributes. The �rst attribute X 1 takes valuesa or b, and the effect of being presentedbover

a is the difference between the two individual-level covariates (i.e. � X 1 = c1 � c2). In other

words, the marginal component effect of b is heterogeneous, and dependent on individual-

level characteristics. The second attributeX 2 takes valuesc or d, and the marginal effect

of d over c is invariant across individuals. Taken together, we get the following schedule of

IMCEs:

Table C1. Hypothetical correlation between IMCEs and two covariate values:c1 and c2 are
randomly drawn from uniform distributions

i c1 c2 � X 1 � X 2

1 0.1 0 0.1 0.1
2 0.25 0.05 0.2 0.1
3 0.15 0.15 0 0.1
...

...
...

...
...

I 0.05 0.25 -0.2 0.1

We can then generate an assignment schedule by sampling at random the attribute lev-

els for I � J observations i.e. attribute-level assignments acrossJ rounds of the experiment

on I individuals. Note here that, since we pre-de�ne the IMCEs, we do not sample two

observations per round – since, the IMCE does not re�ect the probability of choosing one

pro�le over another.
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Suppose the probability of choosing the pro�le is calculated as:

P(Yijk = 1) = 0 :5 + I (X 1 = b)� X 1 + I(X 2 = d)� X 2 :

Given these probabilities, for each individual-round-pro�le, we have a separate pre-

dicted probability of that pro�le being "chosen", i.e. an observed outcome of 1. Table C2

presents an example of how these probabilities would be calculated given random assign-

ment of attributes across rounds, and the pre-de�ned IMCEs in Table C1.

Table C2. Random attribute-level assignment, and calculation of probability

i j X 1 X 2 Calculation Prob Y

1 1 a c 0:5 + 0 + 0 0.5 0
1 2 a d 0:5 + 0 + 0 :1 0.6 1
...

...
...

...
...

...
...

I J b c 0:5 + � 0:2 + 0 0.3 0

Given Tables C1 and C2, we train the BART model on the actual attribute-level assign-

ments, the observed covariates, and the outcome:

Table C3. Training data for the BART model

i c1 c2 X 1 X 2 Y

1 0.1 0 a c 0
1 0.1 0 b c 1
1 0.1 0 a d 1
...

...
...

...
...

...
I 0.25 0.05 b c 0

The BART model then estimates the OMCEs (� ijk ) by making predictions of Y when X 1

is set to b for all observationsand when it is set to a, and deducting these two values, as

demonstrated in Table C4.

Finally, the IMCEs are recovered by averaging the predicted OMCE across observations
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Table C4. Calculating the OMCE by deducting the predicted probabilities under the as-
sumption of different attribute-levels

i Ŷ jX 1 = b Ŷ jX 1 = a b� ijkl

1 0.63 0.5 0.13
1 0.71 0.6 0.11
...

...
...

...
I 0.29 0.5 -0.21

for the same individual. For example, for i = 1 the predicted IMCE is:

�̂ il =
1

J � 2
(0:13 + 0:11 + :::) = 0 :109:::

Given we know the IMCE for this individual is 0.1, the prediction error for this speci�c

subject is �̂ il � � il � 0:109� 0:1 � 0:009. We use these prediction errors to assess the

accuracy of the BART model and corresponding IMCE estimation strategy.

In our actual simulations, we complicate the DGP. We assume that each subject has

three observed covariates:c1 and c2 are continuous covariates drawn from a random uni-

form distribution between 0 and some upper bound of heterogeneity (denoted h); c3 is

a binary variable generated from a binomial distribution with probability = 0.5. We also

assume there is oneunobservedcovariate, c4, which is normally distributed across subjects

with mean 0 and standard deviation h. We randomly assign draws from each of these

random variables to the 500 subjects.

Table C5 summarises the six scenarios we consider. In short, simulations 1 and 2

consider heterogeneity as a linear function of two observed covariates, varying the size of

the heterogeneity parameterh. In simulation 3, treatment heterogeneity is largely random,

although some small component (20%) is a linear function of the two covariates, and in

simulation 4 heterogeneity is a function of a binary variable. In simulation 5 we simulate

heterogeneity as a function of a missing covariate, and induce some correlation between
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an observed variable and this unobserved variable. Finally, in simulation 6, we consider

an exponential function of heterogeneity (testing the predictive �exibility of the BART

model).

For each of 100 iterations, we then generate the data by randomly assigning attribute

levels to 500� 5 observations, where each set of �ve observations correspond to the choices

of a single subject. We calculate the predicted probability p of choosing each pro�le by

multiplying the individuals' generated IMCEs by indicator variables for each of the two

binary attributes plus a constant of 0.5 (such that, short of any attribute information,

subjects are indifferent to the pro�le). We then draw binary outcomes from the binomial

distribution using these predicted probabilities.

For each simulation and each iteration, we calculate the mean absolute error (MAE)

between the BART models' IMCE prediction and the “true" IMCE. Figure C1 plots the av-

erage of each IMCE over 100 iterations, for each simulation speci�cation. On average, we

�nd that the MAE is low across heterogeneity speci�cations. Both linear, binary, and het-

oregeneity as a function of an unobserved covariate all have mean errors of approximately

0.04 to 0.05. When there is substantial random noise to the heterogeneity (simulation 3)

we �nd greater error, but still quite low. What we do notice is at the tails of the IMCE

distribution, the BART predicted effects are slightly conservative – as illustrated by the off-

diagonal tails of the comparisons. This should be expected – the data is sparser at these

points.

C2 Coverage test

To test the uncertainty estimator we propose, we run Monte Carlo simulations in which

we pre-de�ne the IMCEs for each subject and assess the coverage of the resultant credible

interval. As a naive comparison, we also estimate the variance of the IMCE as the simple

mean of the OMCE variances for each subjecti , i.e.
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Figure C1. Average prediction error for each of 500 simulated IMCEs, varying the form of
heterogeneity and its relationship to observed covariates.

Each panel depicts a separate Monte Carlo simulation, varying how heterogeneity in the IMCEs are de�ned.
The individual points show the average error of the predicted IMCE across 500 iterations. The facet headings
also report the mean absolute error (MAE) for each IMCE across these iterations.

\V(� il ) =
1

J � K

X
\V(� ijkl )

These IMCEs are themselves de�ned as normal distributions, where the mean for each

subject is dependent on two subject-level covariates, and some standard deviation param-

eter � i :

� il � N ([C1i � C2i ]; � i )

C1i ; C2i � Uniform(0; c);

where c and � i are parameters set in the simulation.
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In each iteration of the simulations, we take j draws from the IMCE distribution of

each subject. These draws constitute the OMCEs for each subject in the experiment. We

simultaneously generate a completely randomised treatment assignment schedule, for the

IMCE attribute and one further dichotomous attribute where the IMCE is held �xed at 0.1

with zero variation. Given this assignment, we calculate the probability of picking each

pro�le given the drawn OMCEs. We �nally transform the outcome into a dichotomous

measure by using the predicted probabilities to take draws from a binomial distribution.

After generating the simulated conjoint data, we calculate the cjbart predicted IMCEs

and record whether or not the predicted interval contains the true IMCE mean, for each

of the three variance estimation strategies. We repeat this process 500 times – generating

new simulated data from the same (�xed) schedule of true IMCEs. We recover a single

coverage rate for each measure by calculating the proportion of times the simulated IMCE

contains the true population parameter for each hypothetical subject, and then take the

average across these proportions.

To test the robustness of the coverage rate across contexts, we vary the number of

subjects, rounds, the extent of IMCE heterogeneity, and the variance around the IMCE

distributions. Table C6 details the parameter settings used for each of the seven separate

simulation tests we run.

Table C7 reports the coverage rates for the two variance estimation methods. We �nd

that, across different scenarios, the Bayesian interval produces near nominal simulated

coverage rates. In general, coverage rates tend to be slightly conservative, estimating a

slightly wider interval than necessary. We �nd, however, that in scenarios 4 and 5 where

we increase the number of subjects, and where the naive estimator substantially underes-

timates the interval, the coverage of the Bayesian interval is closer to 0.95.
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Table C5. Sources of heterogeneity in IMCEs, for each of 6 separate simulations

Sim. f IMCE c Details

1 c1 � c2 cx � Uniform(0; h = 0:2) Effects are lin-
early heteroge-
neous between
� h and h

2 c1 � c2 cx � Uniform(0; h = 0:05) As above, but the
range is much
smaller

3 0:2(c1 � c2)+0 :8N (0; 0:125) cx � Uniform(0; h = 0:2) Covariates are a
weak predictor of
IMCE heterogene-
ity

4 If c3 = 1; N (0:2; 0:05);
else,N (� 0:2; 0:05)

c3 � Binomial(1; 0:5) IMCE is either
positive or nega-
tive dependent on
observed binary
variable

5 c4 � Uniform(0; h = 0:2) c1 = 2 � I (c4 > 0:6h) �
N (0; 0:25)

IMCE is de-
termined by
unobserved co-
variate that also
in�uences c1.

6 c1 � 2c2 + c2 cx � Uniform(0; h = 0:2) Exponential rela-
tionship between
IMCE and covari-
ates
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Table C6. Simulation speci�cations testing the coverage rate of the con�dence intervals

Sim. Subjects K c � i

1 500 5 0.25 0.05
2 500 5 0.05 0.02
3 500 10 0.05 0.02
4 1500 5 0.25 0.05
5 5000 5 0.25 0.05
6 500 5 0.25 Uniform(0:001; 0:05)
7 500 10 0.25 Uniform(0:001; 0:05)

Table C7. Comparison of coverage rates across the Bayesian and naive intervals.

Sim. Naive Estimate Bayesian

1 0.965 0.977
2 0.996 0.996
3 0.990 0.992
4 0.938 0.954
5 0.919 0.933
6 0.962 0.975
7 0.950 0.965
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C3 RMCE simulation test

In Section 1 of the main paper we note that the RMCE, the marginal effect of an attribute-

level within a speci�c round of the experiment, can be estimated as the average of the

OMCEs within rounds of the experiment for each individual, rather than over all obser-

vations pertaining to that individual. This quantity can be useful to check whether the

are any carryover or stability assumption violations that are necessary for valid conjoint

analysis.

To check this assumption, we can train our �rst-stage model including a round-number

indicator, allowing the model to learn any relationship between the outcome, effects, and

rounds of the experiment. We then assess whether the estimated RMCEs correlate with

the round indicator. If there are no carryover effects, in expectation the correlation should

be zero.

To demonstrate this logic, we conducted a simulation where we repeatedly generated

conjoint data where there either is or is not a serial correlation to the marginal effects of

attribute-levels across rounds. Our simulated conjoint experiment contains three attributes

(A, B, and C), each with two-levels (a1, a2, b1, etc.). Each experiment is run for 10 rounds

and 250 subjects, with two pro�les per round, and we simulate 100 separate experiments.

Within each round of each experiment, we de�ne two sets of utility calculations to

determine the forced-choice between pro�les. In the "round-effect" scenario, the total

utility of the subject i from pro�le j in round k is de�ned as:

URound-effect
ijk = N (0; 0:001)

+ 0:5r � I (A ijk = a2)

+ (0 :6 � 0:1r ) � I (B ijk = b2)

+ 0:5 � I (Pijk = c2);

where r is the round of the experiment. In other words, the effect of level `a2' increases
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over rounds, the effect of `b2' decreases over rounds, and `c2' has a constant effect.

The utility for the scenario in which there are no round effects, is calculated more

simply as:

UNo round-effect
ijk = N (0; 0:001)

+ 1 � I (A ijk = a2)

+ 0:2 � I (B ijk = b2)

+ 0:5 � I (Pijk = c2):

For each pair of pro�les within the experiment, the pro�le that yields the higher utility

gets assigned 1 and the other pro�le gets assigned 0. We calculate this separately for the

round-effect and no round-effect utility calculations, yielding two experimental datasets.

We then estimate the OMCEs for each dataset, as detailed in Section 2,including the

round number indicator as a training variable. This allows BART to �exibly use the round

as an effect predictor if it helps re�ne predictions. In expectation, if there are no carryover

or stability issues, then the round indicator variable should be uninformative. We then

aggregate the OMCEs to the RMCE level by averaging the estimates within each round,

for each hypothetical subject. Finally, we calculate the correlation between the estimated

RMCEs and the round-number.

Figure C2 plots the distribution of these correlation coef�cients by scenario and at-

tribute, across the simulated experiments. For the no round-effects condition, each at-

tribute's distribution is centred on zero as expected – verifying that there is little informa-

tion to be gleaned from the round indicator. For the round-effects scenario, however, there

is a clear positive correlation for attribute A, and conversely a negative correlation for at-

tribute B – clear evidence that the stability and no carryover assumption has been violated.

Most interestingly, the relationship between round and attribute appears to have “leached"

into the RMCE predictions for attribute C, despite the fact that in this scenario the marginal

effect of C is unrelated to the round of the experiment. This clearly demonstrates why en-
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suring this assumption holds is so important – it may lead to biased estimates of attributes

even if they are individually “well-behaved.

Figure C2. Simulation evidence demonstrating how violations of the no carryover assump-
tion can be detected by estimating the RMCE

C4 OLS method comparison

In Figure 2 in the main paper, we demonstrate the ability of our BART method to effectively

detect simulated heterogeneity. Here, we replicate this exercise but with the OLS method

proposed by Zhirkov (2021). Given the design requirements of this approach, we modify

the simulation exercise in two ways. First, to ensure adequate power, we increase the

number of conjoint rounds to 20 (with two pro�les per round). Second, rather than force

a choice between two pro�les (using the de�ned utility function), we simply rescale the

underlying utility to a 0-7 scale, and round the responses to the nearest integer – to mimic a
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